Python文字识别训练:数字识别模型实现MNIST手写数字识别并输出预测的数字(教程实例)

0oD三一o0

温馨提示:这篇文章已超过823天没有更新,请注意相关的内容是否还可用!

首先安装必要的库

pip install opencv-python
pip3 install --user numpy scipy matplotlib
 
pip3 install torch torchvision torchaudio 
pip install matplotlib 
pip install torchvision

训练数字识别模型

"""

****************** 训练数字识别模型 *******************

"""

# -*- coding: utf-8 -*-

import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import matplotlib.pyplot as plt

# 默认显示512张图片
BATCH_SIZE = 512 

# 默认训练批次20次
EPOCHS = 20   

# 默认使用cpu加速  
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 构建数据转换列表
tsfrm = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1037,), (0.3081,))
        ])



# 由于官方已经实现dataset,直接使用DataLoader来获取数据
# MNIST数据集包含6万张28x28的训练样本,1万张测试样本
# 下载训练集
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST(root = 'data', train = True, download = True,
                   transform = tsfrm),
    batch_size = BATCH_SIZE, shuffle = True)


# 下载测试集
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(root = 'data', train = False, download = True,
               transform = tsfrm),
    batch_size = BATCH_SIZE, shuffle = True)


# 展示训练样本图片
# 使用torchvision.utils中的make_grid类方法将一个批次的图片构造成网格模式
def imshow(images):
    img = torchvision.utils.make_grid(images)
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg,(1,2,0)))
    plt.show()



# 从训练集中拿出一批图像
# 用iter和next函数来获取取一个批次的图片数据和其对应的图片标签
images,labels = next(iter(train_loader))
imshow(images)
print(labels)

# 定义一个LeNet-5网络,包含两个卷积层conv1和conv2,两个线性层作为输出,最后输出10个维度
# 这10个维度作为0-9的标识来确定识别出的是哪个数字。
class ConvNet(nn.Module):
    def __init__(self):
        super().__init__()
        # 1*1*28*28
        # 1个输入图片通道,10个输出通道,5x5卷积核
        self.conv1 = nn.Conv2d(1, 10, 5)   
        self.conv2 = nn.Conv2d(10, 20, 3)  
        # 全连接层、输出层softmax,10个维度
        self.fc1 = nn.Linear(20 * 10 * 10, 500)
        self.fc2 = nn.Linear(500, 10)

    # 正向传播
    def forward(self, x):
        in_size = x.size(0)
        out = self.conv1(x)            # 1* 10 * 24 *24
        out = F.relu(out)
        out = F.max_pool2d(out, 2, 2)  # 1* 10 * 12 * 12
        out = self.conv2(out)          # 1* 20 * 10 * 10
        out = F.relu(out)
        out = out.view(in_size, -1)    # 1 * 2000
        out = self.fc1(out)            # 1 * 500
        out = F.relu(out)
        out = self.fc2(out)            # 1 * 10
        out = F.log_softmax(out, dim=1)
        return out



# 生成模型
model = ConvNet().to(DEVICE)
print(model)

# 构建优化器optimizer,包含一个可进行迭代优化的、包含所有参数的列表
# model.parameters()表示优化的参数,lr表示学习率
optimizer = optim.Adam(model.parameters(),lr=0.0001)

# 定义训练函数
def train(model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        # 输入样本和标签
        data, target = data.to(device), target.to(device)
        # 每次训练梯度清零
        optimizer.zero_grad()
        # 正向传播、反向传播和优化过程
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        # 打印训练情况
        if (batch_idx + 1) % 30 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))



# 定义验证函数
def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            # 输入样本和标签
            data, target = data.to(device), target.to(device)
            output = model(data)
            # 将一批的损失相加
            test_loss += F.nll_loss(output, target, reduction='sum') 
            # 找到概率最大的下标 
            pred = output.max(1, keepdim=True)[1]                     
            correct += pred.eq(target.view_as(pred)).sum().item()
    test_loss /= len(test_loader.dataset)

    # 打印验证情况
    print("\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%) \n".format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)
    ))



# 开始训练模型
for epoch in range(1, EPOCHS + 1):
    train(model,  DEVICE, train_loader, optimizer, epoch)
    test(model, DEVICE, test_loader)


# 保存模型
torch.save(model.state_dict(), "./MNISTModel.pkl")
Python文字识别训练:数字识别模型实现MNIST手写数字识别并输出预测的数字(教程实例)

关闭开始训练

Python文字识别训练:数字识别模型实现MNIST手写数字识别并输出预测的数字(教程实例)

20次训练完成 已保存模型

实现MNIST手写数字识别

"""

****************** 实现MNIST手写数字识别 ************************


****************************************************************

"""

# -*- coding: utf-8 -*-

import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms



# 默认预测四张含有数字的图片

BATCH_SIZE = 4
# 默认使用cpu加速  
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")



# 构建数据转换列表

tsfrm = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1037,), (0.3081,))
        ])

# 测试集

test_loader = torch.utils.data.DataLoader(
datasets.MNIST(root = 'data', train = False, download = True,
               transform = tsfrm),
    batch_size = BATCH_SIZE, shuffle = True)



# 定义图片可视化函数

def imshow(images):
    img = torchvision.utils.make_grid(images)
    img = img.numpy().transpose(1, 2, 0)
    std = [0.5, 0.5, 0.5]
    mean = [0.5, 0.5, 0.5]
    img = img * std + mean
    # 将图片高和宽分别赋值给x1,y1
    x1, y1 = img.shape[0:2]
    # 图片放大到原来的5倍,输出尺寸格式为(宽,高)
    enlarge_img = cv2.resize(img, (int(y1*5), int(x1*5)))    
    cv2.imshow('image', enlarge_img)
    cv2.waitKey(0)



# 定义一个LeNet-5网络,包含两个卷积层conv1和conv2,两个线性层作为输出,最后输出10个维度

# 这10个维度作为0-9的标识来确定识别出的是哪个数字。

class ConvNet(nn.Module):
    def __init__(self):
        super().__init__()
        # 1*1*28*28
        # 1个输入图片通道,10个输出通道,5x5卷积核
        self.conv1 = nn.Conv2d(1, 10, 5)   
        self.conv2 = nn.Conv2d(10, 20, 3)  
        # 全连接层、输出层softmax,10个维度
        self.fc1 = nn.Linear(20 * 10 * 10, 500)
        self.fc2 = nn.Linear(500, 10)


    # 正向传播
    def forward(self, x):
        in_size = x.size(0)
        out = self.conv1(x)            # 1* 10 * 24 *24
        out = F.relu(out)
        out = F.max_pool2d(out, 2, 2)  # 1* 10 * 12 * 12
        out = self.conv2(out)          # 1* 20 * 10 * 10
        out = F.relu(out)
        out = out.view(in_size, -1)    # 1 * 2000
        out = self.fc1(out)            # 1 * 500
        out = F.relu(out)
        out = self.fc2(out)            # 1 * 10
        out = F.log_softmax(out, dim=1)
        return out



# 主程序入口
if __name__ == "__main__":
    model_eval = ConvNet()
    # 加载训练模型
    model_eval.load_state_dict(torch.load('./MNISTModel.pkl', map_location=DEVICE))
    model_eval.eval()  
    # 从测试集里面拿出几张图片
    images,labels = next(iter(test_loader)) 
    # 显示图片
    imshow(images)
    # 输入
    inputs = images.to(DEVICE)
    # 输出
    outputs = model_eval(inputs)
    # 找到概率最大的下标
    _, preds = torch.max(outputs, 1)
    # 打印预测结果
    numlist = []
    for i in range(len(preds)):
        label = preds.numpy()[i]
        numlist.append(label)
    List = ' '.join(repr(s) for s in numlist)

    print('当前预测的数字为: ',List)
Python文字识别训练:数字识别模型实现MNIST手写数字识别并输出预测的数字(教程实例)

关闭并输出预测的数字

Python文字识别训练:数字识别模型实现MNIST手写数字识别并输出预测的数字(教程实例)


免责声明:本文来自UQUQ,不代表0oD三一o0的观点和立场,如有侵权请联系本平台处理。

发表评论

快捷回复: 表情:
AddoilApplauseBadlaughBombCoffeeFabulousFacepalmFecesFrownHeyhaInsidiousKeepFightingNoProbPigHeadShockedSinistersmileSlapSocialSweatTolaughWatermelonWittyWowYeahYellowdog
评论列表 (有 232 条评论,24287人围观)
取消
微信二维码
微信二维码
支付宝二维码